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Abstract. This paper introduces a simulation for service robots based on Robot Operating 

System (ROS) and Gazebo. It aims to test and evaluate task planning algorithms. After 

building the environment and the service robot model, a 2D map is built. To make use of 

semantic navigation, we construct a topological map from the 2D map. Several functions are 

written to realize the robot’s necessary actions, including navigation, grasping, placing, 

handing over, and searching person/object. Answer Set Programming (ASP) is used for 

planning; due to its complicated coding and poor legibility, we define an easy to understand 

format and translate it into ASP. Finally, we test our task planning system within the uncertain 

Gazebo environment. The experimental results show the usability of the simulation for task 

planning tests. 

1.  Introduction 

Task Planning integrates all robot’s abilities to make the robot a running system, adapt to dynamic 

changes, and behave intelligently. In recent years, it has received more and more attention from 

researchers. Savage et al. [1] use a conceptual-dependency interpreter extracts semantic role structures 

from the input sentence and planning with the open-source expert system CLIPS [2]. Some work [3] 

focuses on using open source knowledge to handle incomplete information. Hanheide et al. [4] extend 

an active visual object search method to explain failures by planning over explicitly modelled 

additional action effects and assumptive actions. Jiang et al. [5] provide an open world task planning 

approach for service robots by forming hypotheses implied by commands of operators. 

Since testing task planning algorithms on real robots is costly and difficult, an appropriate 

simulation is necessary. Simulation is a vital part of robot software development. Within the 

simulation, we can test and evaluate the algorithms without damaging the robot, and we can do some 

research when we cannot access the robot. This paper builds a simulation for the service robot Kejia to 

test its task planning algorithm. In fact, there are many simulators [6-8], either commercially available 

or open-source. We use Gazebo [9] as our simulator. Gazebo is a 3D dynamic simulator, which can 

accurately and effectively simulate a swarm of robots in complex indoor and outdoor environments. 

Similar to the game engine which provides high fidelity visual simulation, gazebo provides high 

fidelity physical simulation, which provides a complete set of sensor models and a very user-friendly 

interaction mode. Gazebo can simulate complex systems and a variety of sensor components. It is used 

primarily in developing robots used in interaction, to lift or grab objects, push, or any other activity 

requiring recognition and localization in space. 

Gazebo is also compatible with Robot Operating System (ROS) [10], and anyone can develop a 

plugin with model components. The main goal of ROS is to provide code reuse support for robot 



 

 

 

 

 

 

research and development. ROS is a distributed process (i.e. “node”) framework. These processes are 

packaged in packages and function packages that are easy to share and publish. ROS supports a joint 

system similar to code repository, which can realize project collaboration and release. This design 

enables the development and implementation of a project to be completely independent of the 

decision-making from the file system to the user interface. 

Our simulation contains a domestic environment (including rooms, furniture, appliances, and 

manipulable objects) and a service robot. The robot model refers to Kejia [11], which has relatively 

complete atomic ability: navigation, perception, object manipulation, human-robot interaction, task 

understanding and planning, etc. Kejia represents domain knowledge learned through natural language 

processing and leverages a symbolic planner for problem-solving and planning to provide high-level 

functions [12]. The system has been extended to acquire task-oriented knowledge by interacting with 

the user and sensing the environment [13]. We have enhanced its ability to cope with environmental 

change and uncertainty in [14], the task planning algorithm used in this work. For each action in the 

plan, the planner gets its preconditions and effects from domain knowledge, so during the execution of 

the task, the environmental changes, especially those conflict with the actions, not only the action 

being performed but also the subsequent actions, can be detected and handled as early as possible. 

Answer Set Programming (ASP) [15] is used for task planning by many systems. The contributions of 

this paper: 1) We build a domestic environment and a service robot model, realize the robot’s 

necessary actions that can be triggered structured command; 2) We provide a tool to edit the map to 

generate a semantic map, and the robot uses this semantic map for semantic navigation. We put all 

these codes at [16]. 

The remainder of this paper is organized as follows. Section 2 introduces models (robot model and 

various environmental objects) used in the simulation. Section 3 presents the actions for robot task 

planning. In section 4, the task planning algorithm is described, and a series of cases are used to 

validate the simulation system. Section 5 concludes the paper and summarizes the future work. 

2.  Simulation world and robot modelling 

In this section, we introduce the simulation world built and the models in the simulation world. These 

models include objects, buildings, furniture, and a robot. 

2.1.  The simulation world 

In this simulation, there are various environmental objects. We divided environmental objects into two 

categories: location and manipulable object. Location is a beacon for navigation; it can’t be moved (as 

a bathtub) or hardly moved (a bed, for example). In this system, these locations include bed, table, 

cabinet, wardrobe, refrigerator, oven, etc. The objects often to be moved and manipulated are called 

manipulable objects. We have four categories of items: food, drink, fruit, and container. The world file 

specifies the simulation background, lighting, camera pose, physics engines, etc. We create seven 

rooms, and each room contains some locations and some manipulable objects placed on the locations. 

The layout of them is shown in figure 1. 

2.2.  The robot modelling 

As figure 2 shows, the robot model is referred to Kejia robot. The robot model comprises a chassis, 

four wheels (two driving wheels and two driven wheels), an elevator, an arm and a support. All these 

parts of the model are connected by joints. The robot model is equipped with two driving wheels, 

which are controlled by a gazebo plugin. Each wheel’s radius is 9cm, and the distance from the central 

axis of the two wheels is 20cm. A 2d laser sensor is mounted on the chassis. The laser sensor, a 

gazebo ray sensor with a wide scanning angle of 240 degrees and an update rate of 30 Hz, is used for 

mapping, self-localization and navigation. The support contains a support base, a neck (pan and tilt) 

and an RGBD sensor. The pan/tilt and the arm are mounted on the support base. The robot is about 1.6 

meters in height; for supporting the real-time environmental perception, the RGBD sensor, a gazebo 

depth sensor with a resolution of 640x480 and a frame rate of 20 Hz, is mounted on the pan and tilt. 



 

 

 

 

 

 

The elevator and support form a lift to adjust the height of the depth sensor and the arm. The five-

degree-of-freedom (DOF) arm enables our robot to complete manipulation tasks in the indoor 

environment flexibly. It has a reach of over 87 centimetres from the centre of the chassis while fully 

extended. The model has a two-finger gripper, the length of each finger is 10cm. When the gripper is 

fully opened, the distance between them can reach 16cm. It should be noted that the simulation robot 

does not rely on physical properties to grasp objects but uses a gazebo plugin (gripper). Because this 

work is not aimed at grasping research, so this process is simplified. 

    

Figure 1. The simulation world.                                   Figure 2. The robot model. 

3.  Action realization 

To realize the actions for task planning, a set of basic motions need to be implemented. We realize 

these basic motions by ros_control [17] package. The ros_control software package takes the joint 

state data as input and set points from the robot actuator encoder. The controller manager sends 

control command via Joint Command Interfaces to gazebo plugins and gets joint state via Joint State 

Interfaces from gazebo plugins. 

3.1.  Basic motions 

The basic motions include pan/tilt control, robot rotation & moving, elevator traveling up/down, arm 

moving, and gripper opening and closing. 

3.1.1. Navigation. We use package move_base as the implementation of navigation. The move_base 

package provides an implementation of an action that, given a goal in the world, will attempt to reach 

it with a mobile base. The move_base node links together a global and local planner to accomplish its 

global navigation task. In this work, we use Dijkstra’s algorithm as the global planner and Dynamic 

Window Approach as the local planner. The target pose is sent to the topic /move_base/goal to trigger 

the navigation. 

3.1.2. Ev moving & pan/tilt rotation. The elevator and pan/tilt are controlled by the position controller, 

an available controller plugin in ros_control. To use ros_control to control the Kejia model in Gazebo, 

a transmission element, which is used to bind the actuator to the joint, should be added in the model’s 

URDF (Unified Robot Description Format) file. URDF is an XML specification to describe a robot. 

The specification of the robot model covers kinematic and dynamic description, visual representation, 

collision model. 

3.1.3. Arm moving & gripper opening/closing. Based on ros_control, open_hand and close_hand, 

which are used to grasp or release an object, are implemented to open/close the gripper. We use a 

gripper plugin to simplify the simulation. This plugin fixes an object that is grasped to the robot hand 

to avoid problems with physics engines and helps the object staying in the robot hand without slipping 



 

 

 

 

 

 

out. The action arm_reach is defined as accepting a spatial position and moving the arm so that the 

gripper’s centre reaches that position. For a better explanation, according to whether B is higher than A 

and whether C is higher than A or B, six cases are shown in figure 3. AB, BC and CD are three parts of 

the arm; A, B and C are the joints. The point D is the target position to reach at the end of the arm. 

Limited by the robot’s arm structure, after moving the arm to the target (x, y, z), these four points are 

always on a same plane. The last part of the arm (CD in figure 3) always needs to be parallel to the 

ground. Use α, β, and γ to represent the angles of the three joints (A, B, C) need to be rotated. Some 

shorthand symbols are introduced by equation (1), where l1, l2, l3 and (x, y, z) are known. 

 

Figure 3. Arm fetching cases. 
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According to whether z is bigger than 0 (D above A or not), we get equation (2): 
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Taking case 1 as an example, we can obtain equation (3) according to triangles’ properties. 
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In the project, the angle obtained by rotating up the joint is positive; otherwise, it is negative. So we 

get equation (4). 

 / 2 ,  ,  .HAB CBE FCD                     (4) 

Similarly, cases 3 and 5 get the same equation representation as 1. Nevertheless, cases 2, 4 and 6 

get another representation of the equation, as shown in equation (5). The final result selects one of the 

two results according to the constraint range of the angles. 

 / 2 ,  ,  .HAB CBE FCD                     (5) 

3.2.  Actions 

This section describes the actions used for task planning as following. 

 pickup(O,L,G). The robot grabs the object (O) from the designated place (L) to the hand (G). 

This process is divided into four steps: a) searching for the object and confirming its position; 



 

 

 

 

 

 

b) adjusting the pose of the robot to make it convenient for further observation and grasping; c) 

observing the pose of the object and calculating the translation, elevator height and all joints 

angles of the arm required for grasping; d) moving the robot and the arm to complete the 

grasping.  

 putdown(O,L,G). The robot places the object (O) from the hand (G) to some location (L). This 

action consists of three steps: observe the location and confirm the position to be placed; 

calculate the translation amount and arm joint angle required for placement; move the robot 

and arm and release the object. 

 handover(O,H,G). The robot hands over the object (O) to the person (H) from its gripper (G). 

The robot reminds people to catch the object after a fixed time to release the object, and leave 

the rest of the work to the person.  

 findObj(O,L). The robot observes whether an object (O) is found at the specified location (L). 

 findPerson(H,L). The robot observes whether the person (H) can be found at the location (L). 

 moveIn(R2,R1,D). The robot passes through the designated door (D) and moves from one room 

(R1) to another (R2). This action is based on a semantic map, generated from a normal 2D map 

by a map editor tool. As shown in figure 4, rooms are connected by doors. As shown in figure 

5, the map editor is used to edit the 2D map to generate topological information. The map 

editor has four types of entities: room, furniture, way, and door. Doors are open by default. 

The action is divided into two parts: moves to a point in front of the centre of the door and 

then goes through the door. So the robot can get through the door better, especially when the 

door is not very wide. 

 moveTo(L,R). The robot moves to the special location (L). This location and the robot are both 

in the same room (R) in the process. 

  

Figure 4. The topological graph. Figure 5. The map editor. 

Table 1. Preconditions and effects. 

Preconditions Effects 

empty(G), graspable(O), 

isNear(robot,L), isPlaced(O,L) 

isHeld(O,robot), inHand(O,G),  ¬empty(G), 

¬isPlaced(O,L), ¬inRoom(O,R) if inRoom(robot,R) 

inHand(O,G), isNear(robot,L), 

isPlacement(L,true) 

isPlaced(O,L), empty(G), ¬inHand(O,G), 

¬isHeld(O,robot), inRoom(O,R) if inRoom(robot,R) 

inHand(O,G), isNear(robot,H), human(H) isHeld(O,H), empty(G), ¬inHand(O,G), ¬isHeld(O,robot) 

assume(isPlaced(O,L)), object(O), 

isNear(robot,L) 

isPlaced(O,L), ¬assume(isPlaced(O,L)),  

inRoom(O,R) if inRoom(robot,R) 

assume(isNear(H,L)), human(H), isNear(robot,L) 
isNear(H,L), ¬assume(isNear(H,L)),  

inRoom(H,R) if inRoom(robot,R) 

door(D,R1,R2), open(D), inRoom(robot,R1) 
inRoom(robot,R2), ¬inRoom(robot,R1), 

¬isNear(robot,L) if isNear(robot,L) 

inRoom(robot,R), inRoom(L,R), not isNear(robot,L) isNear(robot,L), ¬isNear(robot,L1) if isNear(robot,L1) 



 

 

 

 

 

 

Their preconditions and effects in task planning are listed in table 1 (actions correspond to rows 2 

through 8 in order). These actions require more basic operations provided by the basic operations 

described in section 3.1. 

4. Task planning testing 

In this section, the task planning algorithm is described, and a series of cases are used to validate the 

simulation system. 

4.1. Task planning 

We introduced ASP [15] as the knowledge representation and reasoning tool for Kejia, and CLINGO 

[18] as our ASP solver. ASP is a logic language with Prolog-like syntax and the stable model 

semantics, and a non-monotonic reasoning mechanism. To run a planner, the system needs initial 

states, an action domain, and target states (goals). As described in table 1, the action domain is 

designed according to each action’s preconditions and effects. The initial states are generated from the 

knowledge base, which stores the world’s current state and the robot. The robot obtains this 

information through perception and interaction. The goals are generated from action frames, which are 

generated from the speech by NLP (Natural Language Processing). An action frame is composed of 

five parts: Actor, Action, Object, Source, Goal. Actor represents the executor of the action, usually 

refers to the robot, Action refers to the type of operation, Object is the object to be operated, Source 

refers to the starting position of Object, and Goal refers to the last position of Object. For each input 

sentence, the NLP module works in three steps: 1) Parsing, in which Stanford Parser parses the 

sentences and outputs grammatical relations as typed dependencies; 2) Semantic analysis, in which 

typed dependencies are used to generate action frames; 3) Goals generation, in which action frames 

are translated into the logic predicates that can be recognized by an ASP solver to generate plan. The 

system performs plan using the classical “plan-execute-monitor-replan” loop. It checks if the change 

conflicts with actions in the plan, not only the action being performed, but also the subsequent actions, 

so the conflict can be detected and handled as early as possible. The method features: 1) a method of 

confirming task type, extracting the roles of the task and the roles’ constrained information; 2) 

assumption and grounding methodology to “close” the open-world; 3) continuous sensing and conflict 

detection mechanism that capture dynamical changes in the environments and trigger special 

processing. A video demo, https://youtu.be/TelJpWJe8q8, shows how the robot deal with the changes 

in the open world. For more details about the planning algorithm, please refer to [14]. 

4.2. Serving drinking task 

This section details the behaviour of the simulator as it executes a serving drink task. Figure 6 (video 

demo: https://youtu.be/dxRshRKXQOE) shows robot actions, important knowledge updates, and plan 

changes along with frames. 

The task was initiated by asking the robot to “Bring a beer from the kitchen for me.” The NLP 

module parsed the command and then translated the parsed command into the action frame 

action(robot, get, beer, kitchen, jamie) and a modifier number(1, beer), where Jamie was the user. 

Initially, Jamie and the robot were in the study; the doors from the study to the kitchen were unlocked. 

The robot got vague information: in the kitchen. The module Goal Generation queried the knowledge 

base’s status to find if there were enough beers in the kitchen. At first, in the database, there was no 

beer in the kitchen. Then an assumption was introduced: assume there was a beer on the kitchen table. 

The goal and assumption were generated in ASP format, as shown in table 2. 

Table 2. Goal and assumption. 

ASP Description 

1 { goal(isHeld(A1,jamie)) : requied(A1,a3), not init(isHeld(A3,jamie))} 1 Goal 

init(assume(isPlaced(o_a3_1,kitchen_table))), 

is(o_a3_1,beer), required(o_a3_1,a3) 
Hypothesis 

https://youtu.be/TelJpWJe8q8
https://youtu.be/dxRshRKXQOE


 

 

 

 

 

 

 

Figure 6. The timeline of the execution for command: “Bring a beer from the kitchen for me”. 

Table 3. Actions in the plan. 

Action Description 

moveIn(corridor1,study,study_corridor1) Move to corridor1 from study 

moveIn(living_room,corridor1,living_room_corridor1) Move to living_room 

moveIn(kitchen,living_room,living_room_kitchen) Move to kitchen 

moveTo(kitchen_table,kitchen) Move to the kitchen_table 

findObj(o_a3_1,kitchen_table) Search beer from kitchen_table 

pickup(o_a3_1,kitchen_table,gripper) Pickup beer from kitchen_table 

moveIn(living_room,kitchen,living_room_kitchen) Move to living_room 

moveIn(corridor1,living_room,living_room_corridor1) Move to corridor1 

moveIn(study,corridor1,study_corridor1) Move to study from corridor1 

moveTo(jamie,study) Move to Jamie 

give(o_a3_1,jamie,gripper) Hand the beer over to Jamie 

The Planner generated a plan to achieve the goal from the initial state. This plan consisted of 11 

actions, as shown in table 3. The robot moved to the kitchen table and started searching in the kitchen 

by visiting the kitchen table. There was one cup, one bottle, and one bowl on the kitchen table, but no 

beers. The robot detected this conflict and then made a new assumption: “the beer is in the cupboard.” 

Based on the new assumption, a new plan was generated, as shown in table 4. It visited the cupboard, 



 

 

 

 

 

 

found two cokes and one beer in the cupboard, grabbed the beer, moved to Jamie, and handed it over 

to Jamie. By confirming whether the environment is consistent with the knowledge base or 

assumptions, the robot performs the original plan or makes new assumptions to trigger a new plan. 

Table 4. Actions in the new plan. 

Action Description 

moveTo(cupboard,kitchen) Move to the cupboard 

findObj(o_a3_1,cupboard) Search the beer from the cupboard 

pickup(o_a3_1,cupboard,gripper) Pickup the beer from the cupboard 

moveIn(living_room,kitchen,living_room_kitchen) Move to living_room from kitchen 

moveIn(corridor1,living_room,living_room_corridor1) Move to corridor1 from living_room 

moveIn(study,corridor1,study_corridor1) Move to study from corridor1 

moveTo(jamie,study) Move to Jamie 

give(o_a3_1,jamie,gripper) Hand the beer over to Jamie 

5. Conclusions 
We have presented a domestic simulation environment that consists of rooms, furniture, and 

manipulable objects, built a service robot model with URDF. The simulation aims to test task planning 

algorithms. Several functions are written to realize the robot’s basic actions, including navigation, 

grasping, placing, handing over, and searching person/object. We put the codes at [16] and hope it can 

be helpful for related research. Through the simulation experiment, the planning algorithm can be well 

evaluated in various situations. This simulation system can be easily adjusted to develop other task 

planning algorithms through the actions we have implemented. Overall, the simulation system can 

facilitate the research on task planning. Further study will focus on modeling more uncertainty 

(including actions and environment) and improving the simulation speed. 
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